EMFs.info

Electric and magnetic fields and health

index/glossary | EMFs At A Glance | EMF The Facts (pdf)
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • EMF instruments and other commercial services
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
      • Fields in different countries
      • How fields vary with time
    • Reducing your exposure
  • Known effects
    • Induced currents and fields
      • Numerical calculations of induced currents
      • Details of numerical calculations of induced currents and fields in the body
    • Effects of EMFs on equipment
    • EMFs and medical devices
      • Types of medical devices
      • Real-life experience of interference with Implanted Heart Devices
      • Laboratory Tests of Implanted Medical Devices
      • Consequences if interference does occur with an implanted heart device
      • Manufacturers of Implanted Heart Devices
      • Standards relating to pacemakers and other AIMDs
      • Interference with hearing aids and cochlear implants
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
    • EMFs, agriculture and the environment
      • Bees and microshocks
      • Behaviour of large mammals in magnetic fields and near power lines
  • Evidence on health
    • Childhood leukaemia
      • Pooled analyses of childhood leukaemia and magnetic fields
      • Number of children affected
      • Childhood leukaemia and night-time exposure
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • The “contact current” hypothesis
      • The causes of childhood leukaemia
    • Other health effects
      • Other childhood cancer
      • Breast cancer
      • Other adult cancers
      • Cardiovascular disorders
      • Neurodegenerative disorders
      • Epilepsy
      • Reproductive outcomes and disorders
      • Suicide and depression
      • Sleep disturbance
      • Asthma
      • Hypersensitivity
      • Effects of parental exposure to EMFs
    • Scientific review bodies
      • WHO
      • IARC
      • ICNIRP
      • SCENIHR
      • PHE (formerly HPA, formerly NRPB)
      • IET
      • NAS
      • NIEHS
      • California
      • Bioinitiative
    • Electric fields and ions
      • Electric fields and ions – a commentary on the suggestions
      • Electric fields and ions – NRPB comments
      • Skin cancer
      • Air pollution and childhood cancer
      • How many corona ions do power lines produce?
    • Comparing EMFs to other issues
      • EMFs compared to other issues: smoking
      • EMFs compared to other issues: passive smoking
      • EMFs compared to other issues: coffee
      • EMFs compared to other issues: shift work
      • EMFs compared to other issues: cholera
      • EMFs compared to other issues: BSE and variant CJD
      • Comparative risks
  • Research
    • Types of research
      • Research ethics
    • Epidemiology
      • Causation – what can epidemiology show and what can’t it?
      • Confounding
      • Clusters
    • Animal and laboratory experiments
      • Behaviour of large mammals in magnetic fields and near power lines
    • Mechanisms
      • Energy issues in mechanisms
      • Free radicals
      • Melatonin
      • Cryptochromes
      • Total field and AC field
    • Specific studies
      • UKCCS
      • CCRG
        • CCRG distance study
        • CCRG magnetic fields study
        • CCRG “corona ions” paper
        • CCRG follow-on paper
        • CCRG Underground cables paper
        • CCRG “wrap up” paper
        • CCRG Note on distance
        • Responses to the various CCRG papers
      • French Geocap study
      • California power lines study
      • Imperial College study
      • CEGB cohort
      • Transexpo
    • Ongoing research
      • UK electricity industry research
    • Non peer-reviewed science
    • Abstracts of papers
      • Childhood leukaemia abstracts
      • The CCRG (or “Draper”) study abstracts
      • The UKCCS abstracts
      • The CEGB cohort abstracts
      • Alzheimer’s disease abstracts
      • Breast cancer abstracts
      • Suicide and depression abstracts
      • Animal toxicology experiments abstracts
      • Numerical calculations of induced current – abstracts
      • Abstracts related to the Contact Current Hypothesis
      • Abstracts relating to research on fruit flies
      • Abstracts relating to animal behaviour: orientation in magnetic fields and sensing of power lines
  • Exposure limits
    • Limits in the UK
    • Limits in the USA
    • Limits in the EU
    • Limits in the rest of the world
    • Limits from specific organisations
      • ACGIH
      • NRPB 1993
      • ICNIRP 1998
      • EU 1999
      • ICES 2002
      • NRPB 2004
      • EU 2004
      • SBM 2008
      • ICNIRP 2010
      • EU 2013
      • The Control of Electromagnetic Fields at Work Regulations 2016
      • International Guidelines on Non-Ionising Radiation 2018
      • Comparison of exposure limits across frequencies
    • Indirect effects in exposure limits
    • Compliance with exposure limits
  • Policy
    • UK policy
      • Consent for power lines
      • Cross-Party Inquiry
      • Early Day Motions
      • Parliamentary Questions and Answers
      • UK Government and Parliament
    • European EMF policy
    • Power lines and property – UK
      • Corridors round power lines
    • Power lines and property – USA
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
      • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
      • Government response to SAGE Second Interim Assessment
    • Public Opinion on EMFs
      • Opinion polls conducted by Ipsos MORI on power lines and EMFs
    • Communications on EMFs
    • Litigation on EMFs
  • Finding out more
    • Links
    • Literature
    • Contacts
    • Finding out about other issues
      • Finding out more: Wayleaves and easements
      • Finding out more: Safety clearance distances
      • “Danger of death” notices
      • Finding out more: Audible noise
      • Finding out more: Power lines and satellite navigation
      • Finding out more: Radio and TV interference
  • Static fields
    • Sources of static fields
      • Fields from underground DC cables
      • Effects of static fields on compasses
    • Effects of static fields
    • Static fields – the expert view
      • Types of medical devices
      • WHO – static fields
      • IARC – static fields
      • ICNIRP – static fields
      • PHE – static fields
    • Static field limits
You are here: Home / Known effects / EMFs and medical devices / Interference with hearing aids and cochlear implants

Interference with hearing aids and cochlear implants

Hearing aids and loop systems

Hearing aids in general should not be subject to any interference from power-frequency fields.

With loop systems, and hearing aids when switched to the "loop" setting, there is a risk of interference.  The loop systems are designed to have a very low sensitivity at 50 Hz to avoid these problems, and there's a British Standard (60118-4) that sets criteria to ensure that interference is avoided, but some sensitivity to low-frequencies is necessary - that's how they work - so there's always a possibility of some minor pick-up in extreme circumstances.

The British Standard on Hearing Aid EMC (electromagnetic compatibility), 60118-13, says that it is not possible to set immunity levels at 50 Hz, but recommends following the privisions for loop systems of BS60118-4.

Cochlear implants

Cochlear implants have an internal, implanted, component - the receiver and the electrodes - and an external component - the microphone, processor and transmitter.  Typically, the external components are held on to the head by a static magnet and transmit to the implanted receiver using radiofrequencies.

The British Cochlear Implant Group provide a comprehensive guide to safety (2014 version - currently being updated so may change).  On power lines in particular, they say:

text on cochlear implant safety

In general, it appears that static magnets should be avoided - because they can interfere with the magnets used to attach the external receiver - and anything that injects currents in the head should be avoided because of the risk of damaging the implant.  Static electricity was recognised a problem in the past but may be becoming less so.  But sources of EMFs do not pose any risks, although they may produce a noise through the implant.

See also:

  • Active Implanted Medical Devices in general

Latest news

  • How has the reported risk for childhood leukaemia changed over time? February 11, 2019
  • Media stories about microshocks in children’s playground September 10, 2018
  • New studies on leukaemia and distance from power lines June 1, 2018
  • UK media interest in the causes of childhood leukaemia May 22, 2018
older news

Contact Us

To contact the electricity industry’s EMF Unit Public Information Line (UK only):
telephone 0845 7023270 or email EMFHelpLine@nationalgrid.com.

See Contact us for more contact details including our privacy policy.

About this site

  • What this site covers and what it doesn’t
  • Industry policy
  • Sitemap

Specific questions

  • Affected by a new power line or substation?
  • Building or developing near a power line or substation?
  • Terminology – an introduction
  • Microshocks
  • Pacemakers and other medical devices
  • EMF policy in the UK
Site Authorship |Sitemap | Terms and Conditions | Privacy Policy | Cookies | Site Statistics
© 2019 EMFS.info

EMFs.info Cookies Policy

Our Website uses cookies to improve your experience. Please read our Cookie Policy for more information about cookies and how we use them.

Close
Navigation
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • EMF instruments and other commercial services
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
      • Fields in different countries
      • How fields vary with time
    • Reducing your exposure
  • Known effects
    • Induced currents and fields
      • Numerical calculations of induced currents
      • Details of numerical calculations of induced currents and fields in the body
    • Effects of EMFs on equipment
    • EMFs and medical devices
      • Types of medical devices
      • Real-life experience of interference with Implanted Heart Devices
      • Laboratory Tests of Implanted Medical Devices
      • Consequences if interference does occur with an implanted heart device
      • Manufacturers of Implanted Heart Devices
      • Standards relating to pacemakers and other AIMDs
      • Interference with hearing aids and cochlear implants
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
    • EMFs, agriculture and the environment
      • Bees and microshocks
      • Behaviour of large mammals in magnetic fields and near power lines
  • Evidence on health
    • Childhood leukaemia
      • Pooled analyses of childhood leukaemia and magnetic fields
      • Number of children affected
      • Childhood leukaemia and night-time exposure
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • The “contact current” hypothesis
      • The causes of childhood leukaemia
    • Other health effects
      • Other childhood cancer
      • Breast cancer
      • Other adult cancers
      • Cardiovascular disorders
      • Neurodegenerative disorders
      • Epilepsy
      • Reproductive outcomes and disorders
      • Suicide and depression
      • Sleep disturbance
      • Asthma
      • Hypersensitivity
      • Effects of parental exposure to EMFs
    • Scientific review bodies
      • WHO
      • IARC
      • ICNIRP
      • SCENIHR
      • PHE (formerly HPA, formerly NRPB)
      • IET
      • NAS
      • NIEHS
      • California
      • Bioinitiative
    • Electric fields and ions
      • Electric fields and ions – a commentary on the suggestions
      • Electric fields and ions – NRPB comments
      • Skin cancer
      • Air pollution and childhood cancer
      • How many corona ions do power lines produce?
    • Comparing EMFs to other issues
      • EMFs compared to other issues: smoking
      • EMFs compared to other issues: passive smoking
      • EMFs compared to other issues: coffee
      • EMFs compared to other issues: shift work
      • EMFs compared to other issues: cholera
      • EMFs compared to other issues: BSE and variant CJD
      • Comparative risks
  • Research
    • Types of research
      • Research ethics
    • Epidemiology
      • Causation – what can epidemiology show and what can’t it?
      • Confounding
      • Clusters
    • Animal and laboratory experiments
      • Behaviour of large mammals in magnetic fields and near power lines
    • Mechanisms
      • Energy issues in mechanisms
      • Free radicals
      • Melatonin
      • Cryptochromes
      • Total field and AC field
    • Specific studies
      • UKCCS
      • CCRG
        • CCRG distance study
        • CCRG magnetic fields study
        • CCRG “corona ions” paper
        • CCRG follow-on paper
        • CCRG Underground cables paper
        • CCRG “wrap up” paper
        • CCRG Note on distance
        • Responses to the various CCRG papers
      • French Geocap study
      • California power lines study
      • Imperial College study
      • CEGB cohort
      • Transexpo
    • Ongoing research
      • UK electricity industry research
    • Non peer-reviewed science
    • Abstracts of papers
      • Childhood leukaemia abstracts
      • The CCRG (or “Draper”) study abstracts
      • The UKCCS abstracts
      • The CEGB cohort abstracts
      • Alzheimer’s disease abstracts
      • Breast cancer abstracts
      • Suicide and depression abstracts
      • Animal toxicology experiments abstracts
      • Numerical calculations of induced current – abstracts
      • Abstracts related to the Contact Current Hypothesis
      • Abstracts relating to research on fruit flies
      • Abstracts relating to animal behaviour: orientation in magnetic fields and sensing of power lines
  • Exposure limits
    • Limits in the UK
    • Limits in the USA
    • Limits in the EU
    • Limits in the rest of the world
    • Limits from specific organisations
      • ACGIH
      • NRPB 1993
      • ICNIRP 1998
      • EU 1999
      • ICES 2002
      • NRPB 2004
      • EU 2004
      • SBM 2008
      • ICNIRP 2010
      • EU 2013
      • The Control of Electromagnetic Fields at Work Regulations 2016
      • International Guidelines on Non-Ionising Radiation 2018
      • Comparison of exposure limits across frequencies
    • Indirect effects in exposure limits
    • Compliance with exposure limits
  • Policy
    • UK policy
      • Consent for power lines
      • Cross-Party Inquiry
      • Early Day Motions
      • Parliamentary Questions and Answers
      • UK Government and Parliament
    • European EMF policy
    • Power lines and property – UK
      • Corridors round power lines
    • Power lines and property – USA
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
      • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
      • Government response to SAGE Second Interim Assessment
    • Public Opinion on EMFs
      • Opinion polls conducted by Ipsos MORI on power lines and EMFs
    • Communications on EMFs
    • Litigation on EMFs
  • Finding out more
    • Links
    • Literature
    • Contacts
    • Finding out about other issues
      • Finding out more: Wayleaves and easements
      • Finding out more: Safety clearance distances
      • “Danger of death” notices
      • Finding out more: Audible noise
      • Finding out more: Power lines and satellite navigation
      • Finding out more: Radio and TV interference
  • Static fields
    • Sources of static fields
      • Fields from underground DC cables
      • Effects of static fields on compasses
    • Effects of static fields
    • Static fields – the expert view
      • Types of medical devices
      • WHO – static fields
      • IARC – static fields
      • ICNIRP – static fields
      • PHE – static fields
    • Static field limits