EMFs.info

Electric and magnetic fields and health

index/glossary | EMFs At A Glance | EMF The Facts (pdf)
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • EMF instruments and other commercial services
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
      • Fields in different countries
      • How fields vary with time
    • Reducing your exposure
  • Known effects
    • Induced currents and fields
      • Numerical calculations of induced currents
      • Details of numerical calculations of induced currents and fields in the body
    • Effects of EMFs on equipment
    • EMFs and medical devices
      • Types of medical devices
      • Real-life experience of interference with Implanted Heart Devices
      • Laboratory Tests of Implanted Medical Devices
      • Consequences if interference does occur with an implanted heart device
      • Manufacturers of Implanted Heart Devices
      • Standards relating to pacemakers and other AIMDs
      • Interference with hearing aids and cochlear implants
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
    • EMFs, agriculture and the environment
      • Bees and microshocks
      • Behaviour of large mammals in magnetic fields and near power lines
  • Evidence on health
    • Childhood leukaemia
      • Pooled analyses of childhood leukaemia and magnetic fields
      • Number of children affected
      • Childhood leukaemia and night-time exposure
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • The “contact current” hypothesis
      • The causes of childhood leukaemia
    • Other health effects
      • Other childhood cancer
      • Breast cancer
      • Other adult cancers
      • Cardiovascular disorders
      • Neurodegenerative disorders
      • Epilepsy
      • Reproductive outcomes and disorders
      • Suicide and depression
      • Sleep disturbance
      • Asthma
      • Hypersensitivity
      • Effects of parental exposure to EMFs
    • Scientific review bodies
      • WHO
      • IARC
      • ICNIRP
      • SCENIHR
      • PHE (formerly HPA, formerly NRPB)
      • IET
      • NAS
      • NIEHS
      • California
      • Bioinitiative
    • Electric fields and ions
      • Electric fields and ions – a commentary on the suggestions
      • Electric fields and ions – NRPB comments
      • Skin cancer
      • Air pollution and childhood cancer
      • How many corona ions do power lines produce?
    • Comparing EMFs to other issues
      • EMFs compared to other issues: smoking
      • EMFs compared to other issues: passive smoking
      • EMFs compared to other issues: coffee
      • EMFs compared to other issues: shift work
      • EMFs compared to other issues: cholera
      • EMFs compared to other issues: BSE and variant CJD
      • Comparative risks
  • Research
    • Types of research
      • Research ethics
    • Epidemiology
      • Causation – what can epidemiology show and what can’t it?
      • Confounding
      • Clusters
    • Animal and laboratory experiments
      • Behaviour of large mammals in magnetic fields and near power lines
    • Mechanisms
      • Energy issues in mechanisms
      • Free radicals
      • Melatonin
      • Cryptochromes
      • Total field and AC field
    • Specific studies
      • UKCCS
      • CCRG
        • CCRG distance study
        • CCRG magnetic fields study
        • CCRG “corona ions” paper
        • CCRG follow-on paper
        • CCRG Underground cables paper
        • CCRG “wrap up” paper
        • CCRG Note on distance
        • Responses to the various CCRG papers
      • French Geocap study
      • California power lines study
      • Imperial College study
      • CEGB cohort
      • Transexpo
    • Ongoing research
      • UK electricity industry research
    • Non peer-reviewed science
    • Abstracts of papers
      • Childhood leukaemia abstracts
      • The CCRG (or “Draper”) study abstracts
      • The UKCCS abstracts
      • The CEGB cohort abstracts
      • Alzheimer’s disease abstracts
      • Breast cancer abstracts
      • Suicide and depression abstracts
      • Animal toxicology experiments abstracts
      • Numerical calculations of induced current – abstracts
      • Abstracts related to the Contact Current Hypothesis
      • Abstracts relating to research on fruit flies
      • Abstracts relating to animal behaviour: orientation in magnetic fields and sensing of power lines
  • Exposure limits
    • Limits in the UK
    • Limits in the USA
    • Limits in the EU
    • Limits in the rest of the world
    • Limits from specific organisations
      • ACGIH
      • NRPB 1993
      • ICNIRP 1998
      • EU 1999
      • ICES 2002
      • NRPB 2004
      • EU 2004
      • SBM 2008
      • ICNIRP 2010
      • EU 2013
      • The Control of Electromagnetic Fields at Work Regulations 2016
      • International Guidelines on Non-Ionising Radiation 2018
      • Comparison of exposure limits across frequencies
    • Indirect effects in exposure limits
    • Compliance with exposure limits
  • Policy
    • UK policy
      • Consent for power lines
      • Cross-Party Inquiry
      • Early Day Motions
      • Parliamentary Questions and Answers
      • UK Government and Parliament
    • European EMF policy
    • Power lines and property – UK
      • Corridors round power lines
    • Power lines and property – USA
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
      • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
      • Government response to SAGE Second Interim Assessment
    • Public Opinion on EMFs
      • Opinion polls conducted by Ipsos MORI on power lines and EMFs
    • Communications on EMFs
    • Litigation on EMFs
  • Finding out more
    • Links
    • Literature
    • Contacts
    • Finding out about other issues
      • Finding out more: Wayleaves and easements
      • Finding out more: Safety clearance distances
      • “Danger of death” notices
      • Finding out more: Audible noise
      • Finding out more: Power lines and satellite navigation
      • Finding out more: Radio and TV interference
  • Static fields
    • Sources of static fields
      • Fields from underground DC cables
      • Effects of static fields on compasses
    • Effects of static fields
    • Static fields – the expert view
      • Types of medical devices
      • WHO – static fields
      • IARC – static fields
      • ICNIRP – static fields
      • PHE – static fields
    • Static field limits
You are here: Home / Known effects / Microshocks / Microshocks from bicycles

Microshocks from bicycles

Microshocks are the phenomenon when a person gets charged in an electric field.  When they touch a conducting object they discharge, and although the amount of charge involved is small, because that is concentrated on the small area of the skin where the contact is first made, it produces a sensation very much like the discharge you can sometimes get after walking across a carpet.  See more on microshocks in general.

Cyclist under overhead lineOne specific way this can happen is by riding a bicycle underneath a high-voltage power line.  If you are in electrical contact with a metal part of the bicycle all the times, then no charge can build up between you and the bicycle, and you should not experience any microshocks.  But if you are electrically isolated from the bicycle - e.g. you are holding rubber handlebar grips, or are wearing insulating gloves - then a charge can build up.  This can then discharge as a microshock.  The commonest place for this to happen is either on the fingers if they brush against the brake lever, or in the inside of the upper thigh, as it comes close to the top of the seat pillar just below the saddle or to the saddle rails once each pedal revolution.

These microshocks do not cause any harm to the body or have any lasting effects that we know of.  But in the highest fields - that is, under spans of 400 kV power lines with the lowest clearance - they can be mildly painful, and they are certainly disconcerting because they are usually unexpected. (more on electric field levels under high-voltage power lines and on the sizes of the voltages and charges involved in microshocks)

They are, however, completely avoidable, by the very simple measure of keeping a finger touching the brake lever (or the bare handlebar inboard of the handlebar grips, or a metal bar end, or any other metal part of the bicycle) for as long as you are under the power line.  You don't need to grip it tightly, as long as there is a firm contact (if you only lightly brush your finger against the brake lever, you run the risk of getting microshocks at that point, which is the very thing you are trying to avoid).

After dark, the microshocks may be visible as small flashes, less than a millimetre long.  Again, this can be disconcerting if you are not expecting it, but there is nothing untoward about it; the energy in the flashes is very low, and it does not indicate any fault with the power line.

If you experience problems on a bicycle under a power line that seem worse than the description here, please let us know as we would like to investigate.

Should I expect a microshock every time I cycle under a power line?

No!

We've already talked about the particular conditions that have to exist between you and the bicycle.

  • If you are completely insulated from the bicycle - holding rubber or cork grips - and there is nowhere for contact to be made - your saddle does not have any metal parts in the right place underneath, or you are wearing insulating shorts - then you will not get any microshocks (a charge builds up, but there is nowhere for it to discharge).
  • Conversely, if you are in good electrical contact with the bicycle - holding a metal brake lever or touching metal bars - you will not get microshocks (no charge builds up in the first place).

 

But in addition:

  • The power line needs to be high-voltage - usually 400 kV, or possibly 275 kV. More on telling the different types of pylon apart.
  • It needs to be fairly low clearance, because that increases the electric field - more on the effect of clearance.
  • And it probably needs to be warm dry weather - in humid conditions, the charges are more likely to leak away.

So, the vast majority of times, you will cycle under power lines without experiencing any microshocks at all.

See also

  • What are microshocks?
  • Are there limits related to microshocks?

Latest news

  • How has the reported risk for childhood leukaemia changed over time? February 11, 2019
  • Media stories about microshocks in children’s playground September 10, 2018
  • New studies on leukaemia and distance from power lines June 1, 2018
  • UK media interest in the causes of childhood leukaemia May 22, 2018
older news

Contact Us

To contact the electricity industry’s EMF Unit Public Information Line (UK only):
telephone 0845 7023270 or email EMFHelpLine@nationalgrid.com.

See Contact us for more contact details including our privacy policy.

About this site

  • What this site covers and what it doesn’t
  • Industry policy
  • Sitemap

Specific questions

  • Affected by a new power line or substation?
  • Building or developing near a power line or substation?
  • Terminology – an introduction
  • Microshocks
  • Pacemakers and other medical devices
  • EMF policy in the UK
Site Authorship |Sitemap | Terms and Conditions | Privacy Policy | Cookies | Site Statistics
© 2019 EMFS.info

EMFs.info Cookies Policy

Our Website uses cookies to improve your experience. Please read our Cookie Policy for more information about cookies and how we use them.

Close
Navigation
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • EMF instruments and other commercial services
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
      • Fields in different countries
      • How fields vary with time
    • Reducing your exposure
  • Known effects
    • Induced currents and fields
      • Numerical calculations of induced currents
      • Details of numerical calculations of induced currents and fields in the body
    • Effects of EMFs on equipment
    • EMFs and medical devices
      • Types of medical devices
      • Real-life experience of interference with Implanted Heart Devices
      • Laboratory Tests of Implanted Medical Devices
      • Consequences if interference does occur with an implanted heart device
      • Manufacturers of Implanted Heart Devices
      • Standards relating to pacemakers and other AIMDs
      • Interference with hearing aids and cochlear implants
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
    • EMFs, agriculture and the environment
      • Bees and microshocks
      • Behaviour of large mammals in magnetic fields and near power lines
  • Evidence on health
    • Childhood leukaemia
      • Pooled analyses of childhood leukaemia and magnetic fields
      • Number of children affected
      • Childhood leukaemia and night-time exposure
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • The “contact current” hypothesis
      • The causes of childhood leukaemia
    • Other health effects
      • Other childhood cancer
      • Breast cancer
      • Other adult cancers
      • Cardiovascular disorders
      • Neurodegenerative disorders
      • Epilepsy
      • Reproductive outcomes and disorders
      • Suicide and depression
      • Sleep disturbance
      • Asthma
      • Hypersensitivity
      • Effects of parental exposure to EMFs
    • Scientific review bodies
      • WHO
      • IARC
      • ICNIRP
      • SCENIHR
      • PHE (formerly HPA, formerly NRPB)
      • IET
      • NAS
      • NIEHS
      • California
      • Bioinitiative
    • Electric fields and ions
      • Electric fields and ions – a commentary on the suggestions
      • Electric fields and ions – NRPB comments
      • Skin cancer
      • Air pollution and childhood cancer
      • How many corona ions do power lines produce?
    • Comparing EMFs to other issues
      • EMFs compared to other issues: smoking
      • EMFs compared to other issues: passive smoking
      • EMFs compared to other issues: coffee
      • EMFs compared to other issues: shift work
      • EMFs compared to other issues: cholera
      • EMFs compared to other issues: BSE and variant CJD
      • Comparative risks
  • Research
    • Types of research
      • Research ethics
    • Epidemiology
      • Causation – what can epidemiology show and what can’t it?
      • Confounding
      • Clusters
    • Animal and laboratory experiments
      • Behaviour of large mammals in magnetic fields and near power lines
    • Mechanisms
      • Energy issues in mechanisms
      • Free radicals
      • Melatonin
      • Cryptochromes
      • Total field and AC field
    • Specific studies
      • UKCCS
      • CCRG
        • CCRG distance study
        • CCRG magnetic fields study
        • CCRG “corona ions” paper
        • CCRG follow-on paper
        • CCRG Underground cables paper
        • CCRG “wrap up” paper
        • CCRG Note on distance
        • Responses to the various CCRG papers
      • French Geocap study
      • California power lines study
      • Imperial College study
      • CEGB cohort
      • Transexpo
    • Ongoing research
      • UK electricity industry research
    • Non peer-reviewed science
    • Abstracts of papers
      • Childhood leukaemia abstracts
      • The CCRG (or “Draper”) study abstracts
      • The UKCCS abstracts
      • The CEGB cohort abstracts
      • Alzheimer’s disease abstracts
      • Breast cancer abstracts
      • Suicide and depression abstracts
      • Animal toxicology experiments abstracts
      • Numerical calculations of induced current – abstracts
      • Abstracts related to the Contact Current Hypothesis
      • Abstracts relating to research on fruit flies
      • Abstracts relating to animal behaviour: orientation in magnetic fields and sensing of power lines
  • Exposure limits
    • Limits in the UK
    • Limits in the USA
    • Limits in the EU
    • Limits in the rest of the world
    • Limits from specific organisations
      • ACGIH
      • NRPB 1993
      • ICNIRP 1998
      • EU 1999
      • ICES 2002
      • NRPB 2004
      • EU 2004
      • SBM 2008
      • ICNIRP 2010
      • EU 2013
      • The Control of Electromagnetic Fields at Work Regulations 2016
      • International Guidelines on Non-Ionising Radiation 2018
      • Comparison of exposure limits across frequencies
    • Indirect effects in exposure limits
    • Compliance with exposure limits
  • Policy
    • UK policy
      • Consent for power lines
      • Cross-Party Inquiry
      • Early Day Motions
      • Parliamentary Questions and Answers
      • UK Government and Parliament
    • European EMF policy
    • Power lines and property – UK
      • Corridors round power lines
    • Power lines and property – USA
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
      • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
      • Government response to SAGE Second Interim Assessment
    • Public Opinion on EMFs
      • Opinion polls conducted by Ipsos MORI on power lines and EMFs
    • Communications on EMFs
    • Litigation on EMFs
  • Finding out more
    • Links
    • Literature
    • Contacts
    • Finding out about other issues
      • Finding out more: Wayleaves and easements
      • Finding out more: Safety clearance distances
      • “Danger of death” notices
      • Finding out more: Audible noise
      • Finding out more: Power lines and satellite navigation
      • Finding out more: Radio and TV interference
  • Static fields
    • Sources of static fields
      • Fields from underground DC cables
      • Effects of static fields on compasses
    • Effects of static fields
    • Static fields – the expert view
      • Types of medical devices
      • WHO – static fields
      • IARC – static fields
      • ICNIRP – static fields
      • PHE – static fields
    • Static field limits