EMFs.info

Electric and magnetic fields and health

index/glossary | EMFs At A Glance | EMF The Facts (pdf)
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • “EMF Commercial”
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
    • Screening EMFs
      • Screening fields from underground cables
      • EMF Reduction Devices
  • Known effects
    • Induced currents and fields
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
      • Bees and microshocks
    • EMFs and medical devices
      • Standards relating to pacemakers and other AIMDs
    • Effects of EMFs on equipment
  • Research
    • Types of research
    • Epidemiology
    • Animal and laboratory experiments
    • Mechanisms
    • Specific studies
      • UKCCS
      • CCRG
      • French Geocap study
      • CEGB cohort
      • Imperial College study
  • Current evidence on health
    • Childhood leukaemia
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • Childhood leukaemia and night-time exposure
      • The “contact current” hypothesis
    • Other health effects
    • Scientific review bodies
      • WHO
      • IARC
    • Electric fields and ions
    • Comparing EMFs to other issues
  • Exposure limits for people
    • Limits in the UK
    • Limits in the EU
    • Limits in the USA
    • Limits in the rest of the world
    • Limits from specific organisations
      • ICNIRP 1998
      • ICNIRP 2010
      • NRPB 1993
      • NRPB 2004
      • EU 2004
      • EU 2013
  • Policy
    • UK policy
      • Power lines and property – UK
    • Compliance with exposure limits
    • European EMF policy
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
        • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
        • Government response to SAGE Second Interim Assessment
        • SAGE Second Interim Assessment – the full list of recommendations
  • Finding out more
    • EMF measurement and commercial services
    • Links
    • Literature
    • Contact us
  • Static fields
    • Static fields – the expert view
You are here: Home / Current evidence on health / Other health effects / Other childhood cancer

Other childhood cancer

Most attention has been paid to childhood leukaemia.  However, two recent papers have looked at studies on childhood brain cancer.  The first is a meta-analysis (which takes the published results from relevant studies and combines them) and the second is a pooled analysis (which takes the raw data from relevant studies and combines them).

The results:

The meta-analysis concludes:

"In conclusion, our meta-analysis did not find a robust increase in childhood brain cancer risk with various proxies of residential exposure to magnetic fields. A moderate risk increase, however, cannot be excluded with certainty at high exposure levels. "

The pooled analysis concludes:

"These results provide little evidence for an association between ELF-MF exposure and childhood brain tumors."

The key results from the meta-analsysis are

  • for exposures above 0.2 µT: relative risk = 1.14 (95% confidence interval 0.78-1.67)
  • for exposures above 0.3 or 0.4 µT (a reduced number of studies): relative risk = 1.68 (95% confidence interval 0.83-3.43)

The key results from the pooled analysis are given in this table and shown in the graph, which compares them with the Ahlbom pooled analysis of leukaemia:

exposure<0.1 µT0.1-0.2 µT0.2-0.4 µT>0.4 µT
relative risk10.950.701.14
confidence intervalreference category0.65-1.410.40-1.220.61-2.13

graph showing results of brain pool study 

The implications

These results do not suggest that there is an association with childhood brain tumours.

Epidemiological studies of childhood leukaemia have found an association, primarily at the higher exposure levels.  But we do not know if this is because there actually is a causal effect, or whether it is a result of bias in the studies.  If there is bias in the studies, we might expect the same bias to apply to the brain tumour results as to the leukaemia results.  So if the association is caused by bias, we would probably expect a similar association for brain tumours as for leukaemia.  But of course, if magnetic fields were to cause a wide range of different cancers, this would also lead to associations with both brain tumours and leukaemia. 

The results do not suggest there is a risk for brain tumours.  But they are fairly imprecise, so equally, they do not actually exclude the possibility that there is an association similar to the one for leukaemia.  So we can't definitively tell these possibilities apart at present. 

 

The study abstracts

The study abstracts

Epidemiology. 2008 May;19(3):424-30.
Residential magnetic field exposure and childhood brain cancer: a meta-analysis.

Mezei G, Gadallah M, Kheifets L.
Environment Division, Electric Power Research Institute, Palo Alto, CA 94304, USA.

BACKGROUND: We conducted a meta-analysis of studies on magnetic field exposure and childhood brain tumors to evaluate homogeneity in the results, to examine reasons for heterogeneity, and to derive a summary effect estimate. Comparison of results from studies of childhood brain cancer and childhood leukemia may also help to assess the potential for selection bias in childhood leukemia studies. METHODS: We included results from 13 studies. Using an inverse variance-weighted method, summary effect estimates were calculated separately for distance, wire codes, and measured and calculated magnetic fields. Sensitivity analyses were conducted to assess the influence of individual studies, the potential for selection bias, and the possibility of publication bias. RESULTS: With the exception of wire-code studies, results were compatible with homogeneity across studies. The summary odds ratios (95% confidence intervals) were 0.88 (0.57-1.37) for distance <50 m and 1.14 (0.78-1.67) for calculated or measured magnetic fields above 0.2 microT. For measured or calculated exposures above 0.3 or 0.4 microT, the summary odds ratio was 1.68 (0.83-3.43), with no differences by method of exposure assessment. No single study had a substantial effect on the summary estimates. There was no indication of publication bias. CONCLUSIONS: With the exception of high cut-point analyses (0.3/0.4 microT), where the possibility of a moderate risk increase cannot be excluded, no increase in childhood brain cancer risk was evident for any of the exposure metrics.

 

Am J Epidemiol. 2010 Aug 9. [Epub ahead of print]
A Pooled Analysis of Extremely Low-Frequency Magnetic Fields and Childhood Brain Tumors.
Kheifets L, Ahlbom A, Crespi CM, Feychting M, Johansen C, Monroe J, Murphy MF, Oksuzyan S, Preston-Martin S, Roman E, Saito T, Savitz D, Schüz J, Simpson J, Swanson J, Tynes T, Verkasalo P, Mezei G.

Abstract
Pooled analyses may provide etiologic insight about associations between exposure and disease. In contrast to childhood leukemia, no pooled analyses of childhood brain tumors and exposure to extremely low-frequency magnetic fields (ELF-MFs) have been conducted. The authors carried out a pooled analysis based on primary data (1960-2001) from 10 studies of ELF-MF exposure and childhood brain tumors to assess whether the combined results, adjusted for potential confounding, indicated an association. The odds ratios for childhood brain tumors in ELF-MF exposure categories of 0.1-<0.2 muT, 0.2-<0.4 muT, and >/=0.4 muT were 0.95 (95% confidence interval: 0.65, 1.41), 0.70 (95% CI: 0.40, 1.22), and 1.14 (95% CI: 0.61, 2.13), respectively, in comparison with exposure of <0.1 muT. Other analyses employing alternate cutpoints, further adjustment for confounders, exclusion of particular studies, stratification by type of measurement or type of residence, and a nonparametric estimate of the exposure-response relation did not reveal consistent evidence of increased childhood brain tumor risk associated with ELF-MF exposure. These results provide little evidence for an association between ELF-MF exposure and childhood brain tumors.

See also:

  • index to other health effects

Latest news

  • New publication on cancer incidence from the UK electricity industry Cohort Study August 27, 2019
  • How has the reported risk for childhood leukaemia changed over time? February 11, 2019
  • Media stories about microshocks in children’s playground September 10, 2018
  • New studies on leukaemia and distance from power lines June 1, 2018
older news

Contact Us

To contact the electricity industry’s EMF Unit Public Information Line (UK only):
telephone 0845 7023270 or email [email protected].

See Contact us for more contact details including our privacy policy.

About this site

  • What this site covers and what it doesn’t
  • Industry policy
  • Sitemap

Specific questions

  • Affected by a new power line or substation?
  • Building or developing near a power line or substation?
  • EMF measurement and commercial services
  • Microshocks
  • Pacemakers and other medical devices
  • EMF policy in the UK
Site Authorship |Sitemap | Terms and Conditions | Privacy Policy | Cookies | Site Statistics
© 2021 EMFS.info
Navigation
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • “EMF Commercial”
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
    • Screening EMFs
      • Screening fields from underground cables
      • EMF Reduction Devices
  • Known effects
    • Induced currents and fields
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
      • Bees and microshocks
    • EMFs and medical devices
      • Standards relating to pacemakers and other AIMDs
    • Effects of EMFs on equipment
  • Research
    • Types of research
    • Epidemiology
    • Animal and laboratory experiments
    • Mechanisms
    • Specific studies
      • UKCCS
      • CCRG
      • French Geocap study
      • CEGB cohort
      • Imperial College study
  • Current evidence on health
    • Childhood leukaemia
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • Childhood leukaemia and night-time exposure
      • The “contact current” hypothesis
    • Other health effects
    • Scientific review bodies
      • WHO
      • IARC
    • Electric fields and ions
    • Comparing EMFs to other issues
  • Exposure limits for people
    • Limits in the UK
    • Limits in the EU
    • Limits in the USA
    • Limits in the rest of the world
    • Limits from specific organisations
      • ICNIRP 1998
      • ICNIRP 2010
      • NRPB 1993
      • NRPB 2004
      • EU 2004
      • EU 2013
  • Policy
    • UK policy
      • Power lines and property – UK
    • Compliance with exposure limits
    • European EMF policy
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
        • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
        • Government response to SAGE Second Interim Assessment
        • SAGE Second Interim Assessment – the full list of recommendations
  • Finding out more
    • EMF measurement and commercial services
    • Links
    • Literature
    • Contact us
  • Static fields
    • Static fields – the expert view