EMFs.info

Electric and magnetic fields and health

index/glossary | EMFs At A Glance | EMF The Facts (pdf)
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • “EMF Commercial”
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
    • Screening EMFs
      • Screening fields from underground cables
      • EMF Reduction Devices
  • Known effects
    • Induced currents and fields
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
      • Bees and microshocks
    • EMFs and medical devices
      • Standards relating to pacemakers and other AIMDs
    • Effects of EMFs on equipment
  • Research
    • Types of research
    • Epidemiology
    • Animal and laboratory experiments
    • Mechanisms
    • Specific studies
      • UKCCS
      • CCRG
      • French Geocap study
      • CEGB cohort
      • Imperial College study
  • Current evidence on health
    • Childhood leukaemia
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • Childhood leukaemia and night-time exposure
      • The “contact current” hypothesis
    • Other health effects
    • Scientific review bodies
      • WHO
      • IARC
    • Electric fields and ions
    • Comparing EMFs to other issues
  • Exposure limits for people
    • Limits in the UK
    • Limits in the EU
    • Limits in the USA
    • Limits in the rest of the world
    • Limits from specific organisations
      • ICNIRP 1998
      • ICNIRP 2010
      • NRPB 1993
      • NRPB 2004
      • EU 2004
      • EU 2013
  • Policy
    • UK policy
      • Power lines and property – UK
    • Compliance with exposure limits
    • European EMF policy
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
        • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
        • Government response to SAGE Second Interim Assessment
        • SAGE Second Interim Assessment – the full list of recommendations
  • Finding out more
    • EMF measurement and commercial services
    • Links
    • Literature
    • Contact us
  • Static fields
    • Static fields – the expert view
You are here: Home / EMFS / Media stories about microshocks in children’s playground

Media stories about microshocks in children’s playground

September 10, 2018 by Hayley Tripp

Multiple media have picked up on a Facebook story about children getting small shocks from the metal chains of the swings in a children’s playground under an overhead line in Kent.

Microshocks are a known phenomenon when the electric field from a power line induces small charges on conducting objects.  If you touch such an object, it can discharge to you through a tiny spark called a microshock.  This is very similar to when you acquire a charge through walking across a nylon carpet then touch a metal object, and just like those static shocks, it can be disconcerting but is not regarded as harmful.

We have not investigated this specific instance.  But we would guess that the metal chains are charging up.  The swings in question have a wooden frame, and normally, these would screen the electric field to some extent.  In the long spell of hot dry weather we had this summer, these would dry out, reducing or removing any screening effect.  Also, the drier it is, the more pronounced microshocks are anyway, because humidity in the air can help charge to leak away.

So (although, as we say, we haven’t investigated this specific instance), we are not too surprised by what is being described – it sounds fairly explicable in terms of what we know about microshocks – but it will possibly only have happened in the hot dry weather we’ve had, and we don’t think it would pose any serious health or safety risk.  These microshocks – or any other microshocks you may experience under overhead lines – do not indicate any fault with the line. You are not about to be electrocuted with thousands of volts!

Links to some of the media coverage:

  • https://www.dailymail.co.uk/news/article-6148627/Staff-dismantle-playground-swings-children-suffer-electric-shocks.html
  • https://www.mirror.co.uk/news/uk-news/playground-built-beneath-overhead-power-13203007
  • https://www.kentonline.co.uk/tunbridge-wells/news/probe-as-children-jolted-at-power-line-playground-189291/

(also discussed on the Jeremy Vine show, BBC Radio 2, Monday 10 September starting at about 1230)

And on this site, more on

  • microshocks
  • another specific way microshocks can be experienced, riding a bicycle under an overhead line

Filed Under: EMFS

Latest news

  • New publication on cancer incidence from the UK electricity industry Cohort Study August 27, 2019
  • How has the reported risk for childhood leukaemia changed over time? February 11, 2019
  • Media stories about microshocks in children’s playground September 10, 2018
  • New studies on leukaemia and distance from power lines June 1, 2018
older news

Contact Us

To contact the electricity industry’s EMF Unit Public Information Line (UK only):
telephone 0845 7023270 or email [email protected].

See Contact us for more contact details including our privacy policy.

About this site

  • What this site covers and what it doesn’t
  • Industry policy
  • Sitemap

Specific questions

  • Affected by a new power line or substation?
  • Building or developing near a power line or substation?
  • EMF measurement and commercial services
  • Microshocks
  • Pacemakers and other medical devices
  • EMF policy in the UK
Site Authorship |Sitemap | Terms and Conditions | Privacy Policy | Cookies | Site Statistics
© 2021 EMFS.info
Navigation
  • What are EMFs
    • Terminology – an introduction
    • Electric fields
    • Magnetic fields
    • Units for measuring EMFs
    • Measuring and calculating EMFs
      • “EMF Commercial”
    • Adding fields together
    • Radiofrequencies
    • Screening EMFs
  • Sources
    • Overhead power lines
      • Fields from specific power lines
        • 400 kV
        • 400 kV – specific cases
        • 275 kV
        • 132 kV
        • 66 kV
        • 33 kV
        • 11 kV
        • 400 V/230 V
        • Replacing a 132 kV line with a 400 kV line
      • Summaries of fields from all power lines
      • Factors affecting the field from a power line
        • Voltage
        • Current
        • Clearance
        • Height above ground
        • Conductor bundle
        • Phasing
        • Balance between circuits
        • Balance within circuit
        • Ground resistivity
        • Two parallel lines
      • Calculating and measuring fields from power lines
        • Geometries of power lines
        • Raw data
        • On-line calculator
      • Fields from power lines – more detail on the physics
        • Field lines from a power line
        • The direction of the field from a power line
        • Power law variations in the field from a power line
      • Statistics of power line fields
    • Underground power cables
      • Different types of underground cable
      • Fields from cables in tunnels
      • Gas Insulated Lines (GIL)
      • Underground cables with multiple conductors
      • Effect of height on fields from underground cables
      • Screening fields from underground cables
    • Low-voltage distribution
      • UK distribution wiring
      • USA distribution wiring
    • House wiring
    • Substations
      • National Grid substations
        • Static Var Compensators
      • Sealing-end compounds
      • Distribution substations
      • Final distribution substations
        • Indoor substations
    • Transport
      • EMFs from electric trains (UK)
      • EMFs from cars
    • Appliances
    • Electricity meters
      • Smart meters
      • Traditional meters
    • Occupational exposures
      • Live-line work
      • Static Var Compensators
      • Occupational exposures on pylons
    • Field levels and exposures
      • Personal exposure
      • Other factors that vary with magnetic fields
      • Fields greater than 0.2 or 0.4 µT
    • Screening EMFs
      • Screening fields from underground cables
      • EMF Reduction Devices
  • Known effects
    • Induced currents and fields
    • Microshocks
      • Control of microshocks in the UK
      • Microshocks from bicycles
      • Bees and microshocks
    • EMFs and medical devices
      • Standards relating to pacemakers and other AIMDs
    • Effects of EMFs on equipment
  • Research
    • Types of research
    • Epidemiology
    • Animal and laboratory experiments
    • Mechanisms
    • Specific studies
      • UKCCS
      • CCRG
      • French Geocap study
      • CEGB cohort
      • Imperial College study
  • Current evidence on health
    • Childhood leukaemia
      • Survival from childhood leukaemia
      • Childhood leukaemia and Downs
      • Childhood leukaemia and night-time exposure
      • The “contact current” hypothesis
    • Other health effects
    • Scientific review bodies
      • WHO
      • IARC
    • Electric fields and ions
    • Comparing EMFs to other issues
  • Exposure limits for people
    • Limits in the UK
    • Limits in the EU
    • Limits in the USA
    • Limits in the rest of the world
    • Limits from specific organisations
      • ICNIRP 1998
      • ICNIRP 2010
      • NRPB 1993
      • NRPB 2004
      • EU 2004
      • EU 2013
  • Policy
    • UK policy
      • Power lines and property – UK
    • Compliance with exposure limits
    • European EMF policy
    • Precaution
    • SAGE
      • SAGE First Interim Assessment
        • Government response to SAGE First Interim Assessment
      • SAGE Second Interim Assessment
        • Government response to SAGE Second Interim Assessment
        • SAGE Second Interim Assessment – the full list of recommendations
  • Finding out more
    • EMF measurement and commercial services
    • Links
    • Literature
    • Contact us
  • Static fields
    • Static fields – the expert view